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Abstract—In this paper, we study the stability analysis of Jungck-Ishikawa and Jungck-
Noor iteration procedures for a number of examples. The effect on the convergence with the
variation of parameters in both iterative schemes is shown.

Index Terms— Jungck -Noor iteration procedure, Jungck -Ishikawa iteration procedure,
convergence, stability result, Fixed point iteration procedure.

|. INTRODUCTION

Let (X,d) beacomplete metric space andT : X — X . Let F, be the set of fixed point of T, that is,
F. ={x e X : Tx = x}. The sequence of iterates {X } determined by,

X,=Tx,n=012.. 1.1)

It is called Picard iteration process. But in the case of slightly weaker contractive condition, this scheme may
not converge to the fixed point. Mann [10] introduced a new iterative scheme as follows.

X =(@-a)x +aTx,n=01,.. (1.2)

where {a,}, <[0,1]. But Mann does not converge to a fixed point if T is not continuous. To overcome
this difficulty, some other iteration schemes may be used.
If for x, € X , the sequence{x }" is defined by,

X,=1-a)x +aTz,

z =(1-8)x +pTx,n=0,1,.. (1.3)
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where {o }, and {§_} _, are the real sequences in [0,1]. This is the Ishikawa iteration scheme [8].
If ¢ =1 forall ‘n’in (1.2), it becomes Picard iteration scheme (1.1). Similarly if g =0for each ‘n’ in
(1.3), it reduces to Mann iteration (1.2).
M. A. Noor [11] defined the following scheme for x, € X ,

X,=W0-a)x +aTy,

y, =(@=8)x,+ BTz,

2 =(1-y)x +y Tx ,n=0,1.. 1.4)
where {a }.,, {B.}._, and {y }._, are the real sequences in [0,1] . On putting ¥, =0 for each ‘n’, (1.4)

becomes (1.3).

These iteration schemes have been extensively studied in the literature in the light of Jungck [9] contraction
(see [3], [12, 13], [25] and reference thereof).

Let Y be an arbitrary non empty set and (X,d)a metric space. Let S,T :Y — X and T(Y) < S(Y) for

some x, €Y, consider

Sx ,=f(T,x)n=012.. (1.5)
for Y = X and f(T,x ) =Tx_, the iterative procedure (1.5) yields the Junck iteration [9].
Singh et al. [26] defined Junck-Mann iteration process as follows.

Sx ,=(1-a)SX +aTx,n=012.. (1.6)
where {a, }~_ is asequence in [0,1].
Olatinwo and Imoru [12] defined Jungck-Ishikawa iteration scheme as,

SX ,=(1-a)SX +aTz,

Sz, =(1-p,)Sx, + BTx ,n=0,1,... (x7
where {a,}, and {8}, are the real sequences in [0,1].

Further it is extended by Olatinwo [13] in the following manner.
Let S: X — X and T(X) < S(X) . Define

Sx ., =(1-a,)SXx +o Tz,

Sz, =(1-p,)Sx, +BTr,

Sr=(-y,)Sx +yTX, (1.8)
where n =0,1,...and {e, }.{B,} and {y, } satisfies
o, =1 (i)0<a,pB,,7,<Ln>0
(i) o, = (V)Y o ][ @-« +aa,) converges.

j=0 i=j+1

This scheme is also called Jungck-Noor iteration scheme. On puttingY = X and S = id , the identity map on
X, (1.6) reduces to (1.2), (1.7) becomes (1.3) and (1.8) becomes (1.4).

These iterative procedures give a fruitful result only when the procedure is stable with respect to the map
under consideration. The stability of iterative scheme was first defined by Harder and Hick [6, 7] as follows.

An iterative procedure x , = f(T,x ) issaid to be T-stable with respect to a mapping T if {x } converges

1

to a fixed point g of T and whenever{y } is a sequence in X withlimd(y, , f(T,y )) =0, we have

limy =q.

n—w
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Singh et al. [26] extended it for (S —T) stability in a new setting. A number of authors studied and extended

the notion of various iterative schemes in different settings see for instance Phuengrattana and Suantai [15],
Rhoades and Soltuz [23-24], Berinde [1-3], Chugh et al. [4, 5].

In this paper, we are doing comparative study of rate of convergence of Jungck-Ishikawa and Jungck-Noor
iterative procedures with the help of some examples. The variations of number of iterations (N) versus the

values of «, B,y and x, for Junck-Noor and Jungck-Ishikawa iteration are also studied. In this study we take

o =a,B =pandy =y foralln.

Il. RESULTS AND DISCUSSIONS

Example2.1. Consider the non-linear equation sin(x)—(e"-2)=0. Let us take Tx =sin(x)and

Sx = (e" —2). If we choose initial guess x, =1.5 , then from the Table I, it is observed that Jungck-Ishikawa
iteration  scheme (for « =0.9337912,8=0.1) and Jungck-Noor iteration scheme (for
a =0.9337912, 8 = 0.1 and y=0.2) computes the result in same number of iterations.

TABLE |I. CONVERGENCE OF JUNGCK-ISHIKAWA AND JUNGCK-NOOR ITERATIVE SCHEMES
JI (o =0.9337912, 8 = 0.1) IN (o =0.9337912, 8 =0.1and y=0.2)
Tx Sx

n n+l

Xn +1 8n TXn an+l Xn+l 8n

0 0.9975 1.0930 | 1.1291 | 0.0955 0 0.9975 1.0930 1.1291 0.0955

1 0.9040 0.9141 | 1.0696 | 0.0100 1 0.9040 0.9140 1.0695 0.0100
2 0.8770 0.8789 | 1.0574 | 0.0019 2 0.8770 0.8788 1.0574 0.0019

5 0.8695 0.8695 | 1.0541 | 0.0000 5 0.8695 0.8695 1.0541 0.0000
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Example2.2. Consider the equation e —tanx =0. Let us take Tx =e*and Sx =tanx. If we choose

initial guess x, = 1.0, then Jungck-Ishikawa iteration scheme (for o =0.7256, 8 = 0.312 ) and Jungck-Noor
iteration scheme (for « = 0.7256, 8 = 0.312 and y=0.278) computes the result in 12 iterations (Table II).

TABLE Il. CONVERGENCE OF JUNGCK-ISHIKAWA AND JUNGCK-NOOR ITERATIVE SCHEMES

J(a =0.7256,8 =0.312 ) n IN(a =0.7256, 8 = 0.312 and y=0.278)
n
TXn an+1 Xn+l 8n TXn an+1 Xn+l 8n
0 20.0855 54.2296 1.5524 34.1440 0 20.0855 714671 1.5568 51.3
816
1 105.3275 92.2726 1.5600 13.0549 1 106.7420 97.5034 1.5605 9.23
86
2 107.7569 103.6346 1.5611 4.1223 2 107.9450 105.1585 1.5613 2.78
65
12 108.2759 108.2759 1.5616 0.0000 12 108.2759 108.2759 1.5616 0.00
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Example2.3. Consider the non-linear equatione 4 = +x=1. Letustake Tx=e * and Sx=(1-x).If
we choose initial guessx, =15, then from the Table Ill, Jungck-Ishikawa iteration scheme (for
o =0.8939, 8 =0.125) and Jungck-Noor iteration scheme (for ¢ =0.8939, 8 =0.125 and y=0.327)

computes the solution in 6 number of iterations.
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TABLE Ill. CONVERGENCE OF JUNGCK-ISHIKAWA AND JUNGCK-NOOR ITERATIVE SCHEMES

JI (a =0.8939, 8 = 0.125) n IN (e = 0.8939, 8 = 0.125 and 7=0.327)
n
TXn an+1 Xn+l 8n TXn an+1 Xn+l 8n
2.7183 1.6391 | -0.6391 | 1.0792 0 2.7183 1.9225 -0.9225 0.7957
1 1.0049 1.0686 | -0.0686 | 0.0638 1 1.0456 1.1193 -0.1193 0.0737
2 1.0476 1.0504 | -0.0504 | 0.0028 2 1.0369 1.0474 -0.0474 0.0105
6 1.0516 1.0516 | -0.0516 | 0.0000 6 1.0516 1.0516 -0.0516 0.0000
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Example2.4. Consider the equatione” —2 —sin(e*) =0. Let us take Tx =sin(e’)and Sx=¢"-2. If we

choose initial guess x, = 0.5, then from the Table IV it is observed that Jungck-Ishikawa iteration scheme
(for @=0.8934,5=0.453) and Jungck-Noor iteration (for a=0.8934,5=0.453,y=0.127) evaluates the solution
in same number of iterations.

TABLE IV. CONVERGENCE OF JUNGCK-ISHIKAWA AND JUNGCK-NOOR ITERATIVE SCHEMES

31 (¢=0.8934,3=0.453) n IN («=0.8934,3=0.453,y=0.127 )
n
TXn an +1 Xn +1 8n TXn an +1 Xn +1 8n
0 0.9970 0.6523 0.9754 0.3446 0 0.9970 0.6594 0.9781 0.3375
1 0.4700 0.5531 0.9373 0.0831 1 0.4637 0.5456 0.9343 0.0819
2 0.5551 0.5542 0.9377 0.0009 2 0.5014 0.5549 0.9380 0.0064
5 0.5542 0.5542 0.9377 0.0000 5 0.5542 0.5542 0.9377 0.0000
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111. CONCLUSIONS

The variation in number of iterations with changing values of «, 8,y and x, is studied. It is very exciting to
figure out that convergence rates of both the iterative procedures that is Jungck-Noor and Jungck-Ishikawa
iterative procedures are almost similar with changing any factor («, 8,y and x ) at almost each and every
step for the selected examples. Further, the following observations are noticed.
1. At constant values of B and y , number of iterations falls rapidly initially with changing o but then
starts to decrease gradually (Figs. 1.1, 2.1, 3.1, 4.1).
No specific pattern is observed while changing g at constant « and y (Figs. 1.2, 2.2, 3.2, 4.2).

3. The number of iterations remains almost constant with changing the values of y at constant
a and g (Figs. 1.3, 2.3, 3.3, 4.3).

4. At aspecific choice of x_, the result converges in minimum number of iterations (Figs. 1.4, 2.4, 3.4,
4.4).
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