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Abstract—In this paper, we study the stability analysis of Jungck-Ishikawa and Jungck-
Noor iteration procedures for a number of examples. The effect on the convergence with the 
variation of parameters in both iterative schemes is shown.  
 
Index Terms— Jungck -Noor iteration procedure, Jungck -Ishikawa iteration procedure, 
convergence, stability result, Fixed point iteration procedure. 

I. INTRODUCTION 

Let ( , )X d  be a complete metric space and :T X X . Let TF  be the set of fixed point of T, that is,   

{  : }
T

F x X Tx x   . The sequence of iterates 0{ }n nx 
  determined by,  

1                                                            , 0,1, 2, ...                                                              (1.1)n nx Tx n

   

It is called Picard iteration process.  But in the case of slightly weaker contractive condition, this scheme may 
not converge to the fixed point. Mann [10] introduced a new iterative scheme as follows. 

1
                                                      (1 ) , 0,1, ...                                                (1.2)

n n n n n
x x Tx n 


   

where 0{ } [0,1]n n 
  . But Mann does not converge to a fixed point if T is not continuous. To overcome 

this difficulty, some other iteration schemes may be used. 
 If for 0x X , the sequence 0{ }n nx 

  is defined by, 

1                                                   (1 ) ,

                                                   (1 ) , 0,1,...                                                   
n n n n n

n n n n n

x x Tz

z x Tx n

 

 

  

       (1.3)  
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where 0 0{ }  and { }n n n n  
   are the real sequences in [0,1] . This is the Ishikawa iteration scheme [8]. 

If 1
n

   for all ‘n’ in (1.2), it becomes Picard iteration scheme (1.1). Similarly if 0
n

  for each ‘ n ’ in 
(1.3), it reduces to Mann iteration (1.2). 
 M. A. Noor [11] defined the following scheme for 0x X , 

1
                                                      (1 ) ,

                                                      (1 ) ,

                                                      

n n n n n

n n n n n

x x Ty

y x Tz

 

 

  

  

(1 ) , 0,1, ...                                                    (1.4)n n n n nz x Tx n    

 

where 0 0 0{ } , { }  and { }n n n n n n    
    are the real sequences in [0,1]  . On putting 0

n
   for each ‘n’ , (1.4) 

becomes (1.3).  
These iteration schemes have been extensively studied in the literature in the light of Jungck [9] contraction 
(see [3], [12, 13], [25] and reference thereof). 
Let Y  be an arbitrary non empty set and ( , )X d a metric space. Let , :S T Y X  and ( ) ( )T Y S Y for 

some 0x Y , consider

1
                                                      ( , ), 0,1, 2...                                                           (1.5)

n n
Sx f T x n


   

for  and  ( , )
n n

Y X f T x Tx  , the iterative procedure (1.5) yields the Junck iteration [9].  
Singh et al. [26] defined Junck-Mann iteration process as follows. 

1
                                                      (1 ) , 0,1, 2...                                          (1.6)

n n n n n
Sx Sx Tx n 


   

where 0{ }n n 
  is a sequence in [0,1] . 

Olatinwo and Imoru [12] defined Jungck-Ishikawa iteration scheme as, 
1

                                                      (1 ) ,

                                                     (1 ) , 0,1, ...                                          
n n n n n

n n n n n

Sx Sx Tz

Sz Sx Tx n

 

 

  

          (1.7)

where 0 0{ }  and { }n n n n  
   are the real sequences in [0,1] . 

Further it is extended by Olatinwo [13] in the following manner.   
Let :S X X and ( ) ( )T X S X . Define 

                            1                                                    (1 ) ,                                    

                                                    (1 ) ,                    
n n n n n

n n n n n

Sx Sx Tz

Sz Sx Tr

 

 

  

                    

                                                   (1 )                                                                     (1.8)n n n n nSr Sx Tx   

                                                                  

where 0,1, ...n  and { },{ } and { }n n n   satisfies  

0

0 1

(i) 1                                                    (ii) 0 , , 1, 0

(iii)                                             (iv) (1 ) converges.

n n n

n n

n j i i
j i j

n

a

   

   
  

   

     
 

This scheme is also called Jungck-Noor iteration scheme. On putting  and Y X S id  , the identity map on 
X, (1.6) reduces to (1.2), (1.7) becomes (1.3) and (1.8) becomes (1.4).  
These iterative procedures give a fruitful result only when the procedure is stable with respect to the map 
under consideration. The stability of iterative scheme was first defined by Harder and Hick [6, 7] as follows. 
An iterative procedure 1 ( , )n nx f T x   is said to be T–stable with respect to a mapping T if { }nx  converges 

to a fixed point q of T and whenever{ }
n

y  is a sequence in X with
1lim ( , ( , )) 0n n

n
d y f T y




 , we have

lim
n

n
y q


 . 
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Singh et al. [26] extended it for ( )S T  stability in a new setting. A number of authors studied and extended 
the notion of various iterative schemes in different settings see for instance Phuengrattana and Suantai [15], 
Rhoades and Soltuz [23-24], Berinde [1-3], Chugh et al. [4, 5].  
In this paper, we are doing comparative study of rate of convergence of Jungck-Ishikawa and Jungck-Noor 
iterative procedures with the help of some examples. The variations of number of iterations (N) versus the 
values of 0, ,  and x    for Junck-Noor and Jungck-Ishikawa iteration are also studied. In this study we take 

,  and n n n         for all n.  

II. RESULTS AND DISCUSSIONS 

Example2.1. Consider the non-linear equation sin( ) ( 2) 0xx e   . Let us take sin( )Tx x and 

( 2)xSx e  . If we choose initial guess 0 1.5x   , then from the Table I, it is observed that Jungck-Ishikawa 
iteration scheme (for 0.9337912, 0.1   ) and Jungck-Noor iteration scheme (for 

0.9337912, 0.1 and =0.2)    computes the result in same number of iterations. 

TABLE I. CONVERGENCE OF JUNGCK-ISHIKAWA AND JUNGCK-NOOR ITERATIVE SCHEMES 

 
n 

JI ( 0.9337912, 0.1   )  
n 

JN ( 0.9337912, 0.1 and =0.2    ) 

nTx  1nSx   1nx   n  nTx  1nSx   1nx   n  
0 0.9975 1.0930 1.1291 0.0955 0 0.9975 1.0930 1.1291 0.0955 

1 0.9040 0.9141 1.0696 0.0100 1 0.9040 0.9140 1.0695 0.0100 
2 0.8770 0.8789 1.0574 0.0019 2 0.8770 0.8788 1.0574 0.0019 
. . . . . . . . . . 
. . . . . . . . . . 
5 0.8695 0.8695 1.0541 0.0000 5 0.8695 0.8695 1.0541 0.0000 

 
Figure 1. Effect of ߙ on no. of iteration                                     Figure 2. Effect of β on no. of iteration 

 

Figure 3. Effect of γ on no. of iteration                                         Figure 4. Effect of X0 on no. of iteration 
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Example2.2. Consider the equation 3 tan 0xe x  . Let us take 3xTx e and tanSx x . If we choose 
initial guess 0 1.0x  , then Jungck-Ishikawa iteration scheme (for 0.7256, 0.312 )   and Jungck-Noor 
iteration scheme (for 0.7256, 0.312 and =0.278)    computes the result in 12 iterations (Table II). 

TABLE II. CONVERGENCE OF JUNGCK-ISHIKAWA AND JUNGCK-NOOR ITERATIVE SCHEMES 
 

n 
JI ( 0.7256, 0.312    ) n JN ( 0.7256, 0.312 and =0.278    ) 

nTx  1nSx   1nx   n  nTx  1nSx   1nx   n  
0 20.0855 54.2296 1.5524 34.1440 0 20.0855 71.4671 1.5568 51.3

816 

1 105.3275 92.2726 1.5600 13.0549 1 106.7420 97.5034 1.5605 9.23
86 

2 107.7569 103.6346 1.5611 4.1223 2 107.9450 105.1585 1.5613 2.78
65 

. . . . . . . . . . 

. . . . . . . . . . 
12 108.2759 108.2759 1.5616 0.0000 12 108.2759 108.2759 1.5616 0.00

00 

 

Figure 5. Effect of ߙ on no. of iteration                     Figure 6. Effect of β on no. of iteration 

  

Figure 7. Effect of γ on no. of iteration                        Figure 8. Effect of X0 on no. of iteration 

Example2.3. Consider the non-linear equation
22 1( )

4 1
x

e x


 . Let us take 
22 1( )

4
x

Tx e


 and (1 )Sx x  . If 

we choose initial guess 0
1.5x  , then from the Table III, Jungck-Ishikawa iteration scheme (for 

0.8939, 0.125)    and Jungck-Noor iteration scheme (for 0.8939, 0.125 and =0.327)   
computes the solution in 6 number of iterations. 
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TABLE III. CONVERGENCE OF JUNGCK-ISHIKAWA AND JUNGCK-NOOR ITERATIVE SCHEMES 

 
n 

JI ( 0.8939, 0.125   ) n JN ( 0.8939, 0.125 and =0.327    ) 

nTx  1nSx   1nx   n  nTx  1nSx   1nx   n  
0 2.7183 1.6391 -0.6391 1.0792 0 2.7183 1.9225 -0.9225 0.7957 
1 1.0049 1.0686 -0.0686 0.0638 1 1.0456 1.1193 -0.1193 0.0737 
2 1.0476 1.0504 -0.0504 0.0028 2 1.0369 1.0474 -0.0474 0.0105 
. . . . . . . . . . 
. . . . . . . . . . 
6 1.0516 1.0516 -0.0516 0.0000 6 1.0516 1.0516 -0.0516 0.0000 

 

  

Figure 9. Effect of ߙ on no. of iteration                       Figure 10. Effect of β on no. of iteration 

              

Figure 11. Effect of γ on no. of iteration                                 Figure 12. Effect of X0 on no. of iteration 

Example2.4. Consider the equation 2 sin( ) 0x xe e   . Let us take sin( )xTx e and 2xSx e  . If we 

choose initial guess 0 0.5x  , then from the Table IV it is observed that Jungck-Ishikawa iteration scheme 
(for =0.8934, =0.453)   and Jungck-Noor iteration (for =0.8934, =0.453, =0.127)   evaluates the solution 
in same number of iterations.   

TABLE IV. CONVERGENCE OF JUNGCK-ISHIKAWA AND JUNGCK-NOOR ITERATIVE SCHEMES 
 

n 
JI ( =0.8934, =0.453  ) n JN ( =0.8934, =0.453, =0.127   ) 

nTx  1nSx   1nx   n  nTx  1nSx   1nx   n  
0 0.9970 0.6523 0.9754 0.3446 0 0.9970 0.6594 0.9781 0.3375 
1 0.4700 0.5531 0.9373 0.0831 1 0.4637 0.5456 0.9343 0.0819 

2 0.5551 0.5542 0.9377 0.0009 2 0.5014 0.5549 0.9380 0.0064 

. . . . . . . . . . 

. . . . . . . . . . 
5 0.5542 0.5542 0.9377 0.0000 5 0.5542 0.5542 0.9377 0.0000 
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Figure 13. Effect of ߙ on no. of iteration                                         Figure 14. Effect of β on no. of iteration 

  

Figure 15. Effect of γ on no. of iteration                                             Figure 16. Effect of X0 on no. of iteration 

III. CONCLUSIONS 

The variation in number of iterations with changing values of 0, ,  and x    is studied. It is very exciting to 
figure out that convergence rates of both the iterative procedures that is Jungck-Noor and Jungck-Ishikawa 
iterative procedures are almost similar with changing any factor ( 0, ,  and x   ) at almost each and every 
step for the selected examples. Further, the following observations are noticed. 

1. At constant values of  and   , number of iterations falls rapidly initially with changing   but then 
starts to decrease gradually (Figs. 1.1, 2.1, 3.1, 4.1).  

2. No specific pattern is observed while changing   at constant  and   (Figs. 1.2, 2.2, 3.2, 4.2). 
3. The number of iterations remains almost constant with changing the values of   at constant 

 and   (Figs. 1.3, 2.3, 3.3, 4.3). 

4. At a specific choice of 0x , the result converges in minimum number of iterations (Figs. 1.4, 2.4, 3.4, 

4.4). 
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